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Abstrac

any models and metrics for image quality
e

d
predict image discriminability, the visibility of th
ifference between a pair of images. We compare

d
three such methods for their ability to predict the
etectability of objects in natural backgrounds: a

-
i
Cortex transform model with within-channel mask
ng, a Contrast Sensitivity filter model, and digital

-
m
image difference metrics. Each method was imple

ented with three different summation rules: the
n

w
root mean square difference, Minkowski summatio

ith a power of 4, and maximum difference. The
-

f
Cortex model with a summation exponent of 4 per
ormed best.

Introduction

y
p

Many models and metrics for image qualit
redict image discriminability, the visibility of the

edifference between a pair of images. Some imag1

g
r
quality applications, such as the quality of imagin
adar displays, are concerned with object detection

g
f
and recognition. Object detection involves lookin
or one of a large set of object sub-images in a large

f
set of background images and has been approached
rom this general point of view. We find that2

e
r
discrimination models and metrics can predict th
elative detectability of objects in different images,

l
i
suggesting that these simpler models may be usefu
n some object detection and recognition applica-

-
i
tions. Here we compare three types of image qual
ty metrics that are measures of image discriminabil-

m
ity. The first is a multiple spatial frequency channel

odel based on the Cortex transform with within-
fchannel masking. It is similar to the models o3,4,5

6,7Lubin and Daly. The second is a single contrast
d

a
sensitivity function (CSF) filter model, and the thir
re metrics based on differences between the origi-

s
nal images in the digital domain. Three different
ummation rules were tried in each case: the root-

mean-square (RMS) difference of the outputs, the
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Minkowski sum of the differences with an exponent

m
of 4, and the maximum difference. The three sum-

ation rules can all be regarded as Minkowski sums

T
with exponents of 2, 4, and infinity, respectively.

hese models span the range of image quality
metrics reviewed by Ahumada.1

tObject detection experimen

dExperimental metho

Stimuli. Six images of a vehicle in an other-

v
wise natural setting were altered by replacing the
ehicle with appropriate background imagery. Two

w
object images having lower levels of detectability

ere constructed from each image pair by mixing
-

p
the object and non-object images. The mixing pro
ortions were selected individually for each image

e
5
and chosen to be near threshold detectability. Th
10x480 pixel images were presented on a 13 inch

c
Macintosh color monitor at a viewing distance
orresponding to 95 pixels per degree of visual

angle.
Observers. The observers were 19 male sol-

2
diers, aged 18 to 32 years. Their acuities were
0/20 or better, and they had normal color vision.

hObservers were asked to rate eac.
o

Procedure
f the 24 images on a 4 point rating scale according

to the following interpretation:
1-A target was definitely in the scene.

y
w

2-There was something in the scene that probabl
as a target.
3-There was something in the scene but it prob-

ably was not a target.
4-There was definitely no target in the scene.

s
a
One group of 10 observers saw each image 20 time
t a duration of 1 sec. A second group of 9

f
0
observers saw each image 10 times at a duration o
.5 sec and 10 times at a duration of 2 sec. The

d
s
sequence of 480 images was completely randomize
eparately for each observer.
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ata analysis

Methods. The distance in discriminability
g

n
units from each object image to its correspondin
on-object image was measured in the context of a

one-dimensional Thurstone scaling model. The8

-
t
scaling model incorporated the following assump
ions:

1. Internal stimulus values have a normal distribu-
tion with unit variance.
2. Distances between stimulus distributions for mix-

m
tures of stimuli are proportional to the ratios of the

ixtures.
3. All subjects have the same pattern of distances

y
b
between the stimulus distributions. They differ onl
y a multiplicative subject sensitivity factor.

e
c
4. Category boundaries vary across subjects, but ar
onstant over stimuli.

The scaling model had one image discriminability
-

s
parameter for each of the 6 image sets and one sen
itivity factor and 3 category boundaries for each of

d
the observers. Observers tested with the two
ifferent stimulus durations were allowed separate

t
sensitivity factors. Parameters were estimated by
he method of maximum likelihood.

-Discriminability parame.
t

Experimental results
er estimates scaled to represent the distance (d’)

i
from the 100% vehicle image to the non-vehicle
mage are given in Table 1. Patterns of discrimina-

s
bility differences for the images were estimated
eparately for the 10 observers given 1.0 sec dura-

c
d
tions and the 9 observers given the 0.5 and 2.0 se
urations. The median observer sensitivity factor

p
for each group was used to convert the sensitivity
attern to sensitivities. The values for the combined

g
group are the geometric means of the individual
roup values.

Table 1 - Experimental discriminability indices (d’)
image pair A B C D E F

n
n=10 4.1 10.3 3.7 6.7 4.5 3.7
=9 5.5 10.3 4.7 8.5 4.9 4.7

n=19 4.8 10.3 4.2 7.6 4.7 4.2

o
For the 10 observer group, the ratio of the best
bserver sensitivity factor to the median observer

r
s
sensitivity factor was 1.5 and to the worst observe
ensitivity factor was 3.3. For the 9 observer group

-
s
these ratios were 1.9 and 4.1, respectively. The sen
itivities measured for the 0.5 and 2.0 sec durations

f
were neither appreciably nor significantly different
rom each other.

Models and metrics

h
c

Although the observers were presented wit
olor images, the models were only presented with

c
gray scale images. The RGB color images were
onverted to gray scale using the coefficients

e
c
87/253, 127/253, and 39/253 for the respectiv
olor planes. Also, these gray scale images were

l
a
pixel-averaged by factors of two in the horizonta
nd vertical dimensions.

sAlgorithm

Multi-channel model. The channel model cal-

c
culations had the following steps: The images were
onverted to luminance contrast based on the mean

f
luminance of the non-object image. A CSF filter
ollowed by the cortex transform was then applied.

t
a
The differences between the transforms of the objec
nd non-object images were then masked by the

-
i
transform values of the non-object image. A mask
ng exponent of 0.7 was used and the output scaled

u
to predict the detectability of grating patches on a
niform background. Finally, these JND (just-

a
M
noticeable-difference) images were summed using

inkowski metric with exponents of 2, 4, and
infinity.

CSF filter model. For the filter model, the
t

b
images were also converted to luminance contras
ased on the mean luminance of the non-object

d
image. A CSF filter was then applied and the
ifference image formed and summed using a Min-

kowski metric with exponents of 2, 4, and infinity.
The CSF filters were calibrated separately for

m
each of the 6 combinations of channel or filter

odel and exponent. They were designed to fit the

s
prediction of Barten’s CSF formula for 1.33 deg
quare grating patches over frequencies ranging

.from 1.125 to 18 cycles per degree in octave steps 9

nThe difference betwee.
t

Digital image metrics
he gray scale images was formed and summed

-
t
using the same three Minkowski metrics. The digi
al metrics have two implicit parameters, the pixel

f
density Nyquist frequency of 24 cycles/deg, a high
requency cutoff, and the display gamma of 1.5,

s
a
which controls the relative weighting of difference
s a function of luminance level.

sModel result

Least squares predictions of the observer
e

c
discriminabilities from the model predictions wer
omputed in the log domain, assuming only an addi-

tive constant, because analyses in the
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Table 2 - Prediction errors in percent of discriminability indices (d’)
channel CSF filter image

exponent 2 4 ∞ 2 4 ∞ 2 4 ∞
n=10 51 33 41 55 55 86 49 43 38

6n=9 47 28 30 53 50 79 59 51 4
n=19 48 30 35 54 52 82 53 47 42

Table 3 - Prediction errors for image contrast corrected models
channel CSF filter image

exponent 2 4 ∞ 2 4 ∞ 2 4 ∞
a 7 14 9 0 0 0 0 0 0
error 25 16 26 14 13 33 17 14 18

t
discriminability domain showed neither constant
erms nor squared terms significantly improved the

v
fits. The standard errors of the predictions con-
erted to percentage error in discriminability units

-
n
are shown in Table 2. The best metric is the chan
el model with a summation exponent of 4. The

m
r
image difference metric did well with the maximu
ule while the CSF filter model did very poorly

f
t
with the maximum rule. Figure 1 shows plots o
he predictions of the average subject detectabilities

b
for the 6 image pairs for each algorithm using the
est of the three summation rules for that algorithm

fi
(exponents of 4, 4, and infinity, for the channel,

lter, and image difference rules, respectively). The

m
error bars represent 95% confidence intervals for the

ean of the two groups of subjects based on the

C

variance between the two groups.

ontrast normalization

Recent data have shown that contrast energy

g
at other spatial frequencies raises the threshold of
rating increments and models have been developed

to account for this effect. A simple way of allow-10

-
i
ing for such an effect is to multiply the above pred
ctions by a /√a + c , where c is the RMS back-

g
2 2

round image contrast passed by the contrast sensi-

t
tivity function, and a is a parameter estimated from
he data. For the filter models the best estimate of

d
a was close to zero, so in this case we simply
ivided the predicted discriminability by the RMS

e
i
contrast of the filtered background image. For th
mage difference model, we divided the image

e
b
difference measure by the standard deviation of th
ackground image values.

Table 3 has the resulting errors shown as a
.

V
percentage of the pooled group discriminabilities

alues of a are in percent contrast. With contrast
normalization all three metrics performed much

better and essentially all did equally well at their
s

t
optimal summation exponent of 4. Figure 2 show
hese results plotted as in Figure 1. If the value of

e
c
a for the filter model is set to about half that for th
hannel model, the filter model performs well using

p
our relative error measure and also accurately
redicts the absolute level of performance when

i
calibrated for threshold contrast detection. An
mplicit parameter of the contrast gain correction is

c
the size of the region over which the contrast is
omputed. In this case it was a 2.7 deg square, not

e
w
out of line with psychophysical measurements of th

idth of the contrast gain control region. 211,1

s

D

Conclusion

iscrimination models designed to answer, "Are
o

t
these two images different?" can predict answers t
he question, "Is there an object in this image?"

l
m
Without contrast gain factors, the multiple channe

odel performs better than the simpler models, and

t
it is the only model that comes close to predicting
he absolute level of performance when calibrated

-
t
for threshold contrast detection. However, a con
rast gain term allows much better prediction and

-
u
obviates the need for complex models in this partic
lar situation. CSF weighting does not necessarily

improve measures of image quality.13,14

s

R
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Figure 1. Detection data predictions by three image quality metrics.
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Figure 2. Detection data predictions by three image quality metrics  normalized by contrast.
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